Application of 3D printing technology in the field of vascular regeneration

NI Min, CAO Xia, XU Ximing, YU Jiangnan

Journal of Jinan University Natural Science & Medicine Edition ›› 2025, Vol. 46 ›› Issue (1) : 117-126.

PDF(941 KB)
PDF(941 KB)
Journal of Jinan University Natural Science & Medicine Edition ›› 2025, Vol. 46 ›› Issue (1) : 117-126. DOI: 10.11778/j.jdxb.20240147
Biomedical materials

Application of 3D printing technology in the field of vascular regeneration

Author information +
History +

Abstract

Rapid advancements of 3D printing technology in the biomedical field have provided new solutions for vascular regeneration. This paper summarized applications of 3D printing in vascular regeneration, highlighting innovations in biomaterial design, vascular structure construction and cell carrier development. It details the characteristics of common vascular scaffold materials, the release systems of bioactive factors, and the establishment of simulation models. By analyzing the impacts of printing technology, biomaterials and active factors on vascular regeneration in practical applications, this paper discussed how to further utilize 3D printing technology to accurately build biocompatible vascular tissue models. Additionally, it addressed future directions including the selection of biocompatible materials, printing precision, cell survival rate, and maintenance of function. 3D printing technology has broad prospect in the field of vascular regeneration, but challenges in biocompatibility and functionality must be overcome for broad clinical application.

Key words

3D printing / vascular regeneration / tissue engineering / vascular structure / biological ink

Cite this article

Download Citations
NI Min , CAO Xia , XU Ximing , YU Jiangnan. Application of 3D printing technology in the field of vascular regeneration. Journal of Jinan University Natural Science & Medicine Edition. 2025, 46(1): 117-126 https://doi.org/10.11778/j.jdxb.20240147
开放科学标识码(OSID)
据全球市场研究机构Grand View Research的报告[1],全球3D生物打印市场规模到2027年预计将达到数十亿美元。然而,其中的3D打印血管领域仍面临一些挑战,如打印精度、生物相容性、细胞存活率及血管功能的恢复等问题[2]
血管再生是人体自我修复和再生的关键过程,对于心脏病、糖尿病引起的血管损伤及器官移植后的血管重建具有重要意义[3]。3D打印技术为这些疾病的治疗提供了新的思考路径,但同时也提出了新的技术挑战,例如打印材料的选择,确保生物相容性和生物降解性,以及如何设计出能够刺激细胞增殖和血管网络形成的支架[4]。本文将探讨3D打印技术在血管再生领域的应用潜力,同时也揭示当前存在的问题,旨在为后续的研究提供一定参考。

1 3D打印技术在血管再生领域的应用

3D打印技术自20世纪90年代引入医学领域以来发展迅速。随着生物打印和精准医疗的兴起,3D打印技术分为光固化式3D打印、挤压式3D打印、喷墨式3D打印等,以其高度定制化和精确控制的特点,引起了科学家们的广泛关注[5]。特别是在血管再生领域,因其能够模拟人体血管的复杂结构,提供一个理想的平台来研究血管的形成和再生过程[6],3D打印技术展现出了巨大的潜力。
不同于其他组织工程血管再生技术,3D打印技术是一种将细胞、生物材料和生物活性因子以一定的方式层叠、排列和组装,定制化制备具有复杂结构和功能的人工血管和血管支架[7],实现血管组织的构建[8],可为血管再生和修复提供全新的途径[9],进一步推动血管再生技术的进步和应用。其中,细胞源性3D打印,利用患者自身的干细胞,被认为是实现个性化血管治疗的关键[10]。Goriainov等[11]利用患者自身的骨骼干细胞设计个性化3D打印方案,增强了骨形成和种植体骨整合,减少翻修手术的次数对患者带来的损害;Bax等[12] 则是将个性化3D打印技术和心血管细胞模型相结合,更准确地建模和探索心血管生物学[13]。这些创新性研究展示了3D打印血管模型在药物筛选、疾病模型构建[14]和临床前试验中的应用成效[15]

1.1 多材料打印血管支架

多材料打印血管支架是指将不同生物材料结合在一起,利用3D打印技术制备的具有多种功能和特性的支架。生物材料包括天然生物材料、合成生物材料等,这些生物材料可用于血管支架、人工血管和生物活性因子载体的制备,在血管再生领域中发挥着重要作用[16]:为血管再生提供支撑,促进细胞生长和定向组织工程构建物的形成。3D打印技术可以同时使用多种材料进行打印,这使得血管再生领域可以实现复杂结构的制造[17]。例如,在制造血管支架时,可以利用不同材料模拟血管壁的多层结构,从而增加支架的稳定性和生物相容性。通过多材料打印,可以实现更加个性化和精准的治疗方案来提高治疗效果。表1为血管支架的常见材料。
Table 1 Common materials of vascular scaffold

表1 血管支架常见材料

材料名称 生物相容性及可降解性 机械性能 其他 参考文献
聚乳酸(polylactide, PLA) 生物相容性良好,降解产物是乳酸。降解速度受温度、湿度和pH值等影响较大;在自然环境中降解速度较慢。 具有较高的拉伸强度和刚性,低温条件下脆性较高。 熔点低,易于加工,但高温下容易变形;易吸湿,影响打印质量。 [26]
聚乳酸-羟基乙酸[poly(lactic-co-glycolic acid), PLGA] 生物相容性良好,降解产物为无毒的乳酸和羟基乙酸。但产生的乳酸可能导致局部酸性环境,影响周围细胞的生存和功能。 具有较好的拉伸强度和韧性;热稳定性差,通常在60~70 ℃易热变形;改变PLA和PLGA的比例,可调节降解速率和机械性能。 可用于制备药物释放系统,能有效控制药物释放速率;加工方式多样(如喷雾干燥、溶液浇铸、3D打印等);生产成本较高。 [27]
甲基丙烯酰化明胶(gelatin methacrylate, GelMA) 生物相容性良好,体内外可逐渐降解。含有明胶成分,能够促进细胞的附着和增殖,有利于细胞的生长和组织再生。 通过改变GelMA浓度、交联程度和光照条件,可以调节其机械性能; 机械强度通常较低。 通过调节其交联度和网络结构,可实现对药物释放速率的控制;具有适合3D生物打印的流变特性,可用于构建复杂的三维组织结构。 [28]
甲基丙烯酰化透明质酸(hyaluronic acid methacrylate, HAMA) 生物相容性良好,透明质酸是体内自然存在的成分,能够与生物体良好相容。在体内可以被酶降解,降解产物无毒;降解速率受多种因素影响。 通过调节HAMA的浓度、交联程度和光照条件,可改变其机械性能;机械强度相对较低,可能不适合承受较大机械负荷的应用。 有良好的亲水性,能保持较高的水分含量;具有适合3D生物打印的流变特性,可用于构建复杂的三维组织结构;加工过程相对复杂,生产成本较高。 [18]
甲基丙烯酰化聚乙烯醇(polyvinyl alcohol methacrylate, PVAMA) 生物相容性良好,能够支持细胞的黏附和增殖。在体内逐渐降解;降解时受多种因素影响,降解时间不确定。 含甲基丙烯酸酯基,PVAMA能通过光交联或化学交联形成三维网络结构,增强其机械性能和稳定性。 在水中具有良好的溶解性;固化过程依赖光源的强度与波长,交联过程较复杂,生产成本较高。 [29]

1.2 集成生物活性因子释放系统

在3D打印血管支架或人工血管的过程中,通过集成生物活性因子释放系统,实现对血管再生的调控和促进[18]:可以控制生物活性因子的释放速率和剂量,提高血管再生的效率和成功率。
生物活性因子是一类具有生物活性和功能的蛋白质或小分子,能激活细胞信号通路、促进细胞增殖和分化,以及诱导新血管和血管网络的形成[19],如血管生长因子(vascular endothelial growth factor, VEGF)、血管生成抑制因子(angiogenesis inhibitors)、成骨因子(bone morphogenetic protein, BMP)、细胞黏附蛋白(arg-gly-asp, RGD)、其他生长因子和细胞因子等[20],能促进细胞增殖、迁移和血管形成,加速血管再生过程[21]。通过对生物活性因子的选择、浓度的优化、相容性与释放机制等方面的考察,可选择出合适的生物活性因子及其浓度来控制血管再生的生物学效应。集成生物活性因子的释放机制见表2。载体材料是一种能够稳定保存和控制释放生物活性因子的材料,可以是生物可降解材料、聚合物、纳米颗粒。Saberianpour等[22]通过探讨载体材料与促血管生成因子的结合形式来研究用于诱导促血管生成信号通路的不同策略和方法。同样,释放机制也可以通过控制载体材料的结构、化学性质、生物降解速度等来实现对生物活性因子的释放。Morton等[23]利用载体材料的性质,用分子信号引导和促进负载神经血管生长支架的功能化;Zhao等[24]使VEGF从纳米纤维支架中稳定和持续释放,运用含VEGF的支架增强内皮细胞功能。生物活性因子在血管不同层次的作用效果见表3。由此可见,集成生物活性因子释放系统将为血管再生领域的研究提供更多可能性,推动血管再生技术的不断完善和创新[25]
Table 2 Release mechanism of integrated bioactive factors

表2 集成生物活性因子的释放机制

负载方式 释放机制 参考文献
微囊 通过静电喷雾将生物活性因子包裹在微囊中来实现对药物的缓释。这些微囊可以根据需求设计不同的释放速率,通常通过改变聚合物的性质或微囊的大小来调整。 [24,30]
载体材料 使用可降解的聚合物材料(如PLGA、GelMA等)作为血管支架,可在体内逐渐降解并释放生物活性因子。材料的降解速率可以通过改变聚合物的分子量和共聚物比例来调节。 [25]
纳米颗粒 将生物活性因子负载在纳米颗粒上,这些颗粒可以通过3D打印技术嵌入到生物支架中,延长药物释放时间。 [31]
智能材料 利用响应性材料(如温度、pH变化等)来控制生物活性因子的释放。例如,当环境条件变化时,材料的结构会发生变化,从而影响药物释放的速率。 [23]
Table 3 Effect of bioactive factors on different levels of blood vessels

表3 生物活性因子在血管不同层次的作用效果

生物活性因子 作用部位 作用效果 参考文献
血管内皮生长因子(VEGF) 内皮层 促进内皮细胞的增殖和迁移以及内皮层的再生,改善血管的通透性和功能。 [17,24]
成纤维生长因子(fibroblast growth factor, FGF) 内皮层
平滑肌层
刺激内皮细胞以及平滑肌细胞的增殖和迁移,增强血管的稳定性和弹性。 [20]
胶原蛋白(Collagen) 平滑肌
层外膜层
生物活性因子通过释放细胞外基质成分,增强血管外膜的结构支持,促进血管的整体稳定性。 [19]
转化生长因子β(transforming growth factor-β, TGF-β) 内皮层
平滑肌层
刺激内皮细胞以及平滑肌细胞的增殖和迁移,增强血管的稳定性和弹性。 [21]

1.3 制造具有高精度与复杂性的仿生血管模型

在高精度方面,3D打印技术可以通过逐层堆积材料的方式实现微米级甚至纳米级的精度。其中,3D打印技术能否达到高精度的要求,取决于以下几个因素:首先是打印技术,不同的3D打印技术[如熔融沉积成型法(fused deposition modeling, FDM)、选择性激光烧结法(selective laser sintering, SLS)、立体光固化成型法(stereo lithography appearance, SLA)等]具有不同的分辨率和精度,例如, SLA通常能够达到更高的打印精度,Zárybnická等[32]正是通过SLA对原材料进行加工和固化来生产出具有精确定义尺寸的膜物体的微结构;其次是材料特性,材料的流动性、固化速度和收缩特性会影响打印精度,Xu等[26]在相同的3D打印参数下将黄芪渣粉/聚乳酸(astragalus residue powder, ARP/PLA)、木粉/聚乳酸(wood-flour, WF/PLA)和稻草粉/聚乳酸(rice straw powder, RSP/PLA)3种材料的性能进行对比,发现各类材料间存在显著差别,因此选择合适的生物相容性材料对于实现高精度打印至关重要;最后,打印机的设置(如层厚、打印速度等)也直接影响着打印的精度,打印精度能够满足对医疗器械产品精度和质量的严格要求,Candidori等[33]就利用高精度的3D打印进行子宫模型的设计和验证,加快和优化产后出血(postpartum haemorrhage, PPH)治疗设备,降低了孕产妇死亡率。
另一方面,3D打印技术具有制造复杂结构的独特优势,其可以实现高精度的制造,精确打印出微小的结构和复杂的形状[34]。这种高精度和复杂性的优势可以满足对血管支架和血管模型精确性和复杂性的需求,医生可以利用3D打印技术制造出符合患者具体需求的血管支架,从而提高手术的成功率和治疗效果。Yang等[35]构建了一种具有自氧化作用的3D打印生物活性水凝胶支架,该支架除具备细胞外基质的特性及良好的压缩强度外,还可以通过O2和3D打印孔隙结构的协同作用来防止缺损中心的坏死,从而进一步诱导血管网络的长入,这解决了有限的细胞和因子、不足的力学性能及坏死的缺损中心阻碍血管组织工程支架临床广泛应用这一问题。
利用3D打印技术制造出具有高精度和复杂性的仿生血管模型,可以用于模拟人体内血管复杂的结构和功能[36]。建立仿真模型的步骤见表4。同时,具有高精度和复杂性的仿生血管模型也可进一步用于研究血管病变机制、药物筛选和治疗效果评估等方面,如动脉粥样硬化、血栓形成等,有助于深入了解疾病机制,评估药物在血管内的传递和作用效果。为此,Ma等[37]研究了如何利用3D打印技术构建功能性组织模型来进行个性化药物筛选和疾病建模。此外,仿生血管模型还可以用于测试生物材料的相容性和生物功能,推动生物材料的应用和发展。各类仿生血管模型所提供的数据(表5),也可以为医学研究和临床实践提供新的工具和平台。
Table 4 Steps to build a simulation model

表4 建立仿真模型的步骤[38,40-41]

数据获取 数据处理 模型优化
医学影像数据 计算机辅助设计模型 图像分割 网格化 精度优化 复杂性设计
通过计算机断层扫描(computed tomography, CT)、磁共振成像(magnetic resonance imaging, MRI)或超声波等医学成像技术获取患者的血管结构数据。 使用计算机辅助设计(computer aided design, CAD)软件根据影像数据进行建模,生成三维血管结构。 使用图像处理软件[如医学图像处理软件包(insight segmentation and registration toolkit, ITK)、医学图像分割工具(3D slicer)等]对医学影像进行处理,提取血管的轮廓和结构。 将处理后的数据转换为适合3D打印的网格模型[如立体光刻(stereo lithography, STL)格式]。 根据3D打印机的分辨率和材料特性,对模型进行细化和优化。 根据需要设计血管的分支、曲率和其他复杂结构,确保其生物功能。
Table 5 Simulation model data types

表5 仿真模型数据种类

数据来源 优点 缺点 参考文献
患者的医学影像数据 个性化治疗:能够根据患者的具体情况设计血管模型,提高治疗效果。 数据获取难度:获取高质量的医学影像数据需要专业设备和技术,可能存在成本和时间上的限制。
处理复杂性:数据处理和模型优化过程复杂,需要专业的软件和技术人员。
[41]
生物力学数据 高复杂性 :可以设计出具有复杂结构的血管,模拟真实生物环境。
功能性:通过集成生物活性因子,增强血管的再生和修复能力。
打印精度限制 :虽然3D打印技术不断发展,但对于极小的结构和细节,仍可能存在精度不足的问题。 [37]

1.4 生物打印定制化血管支架

定制化制造支架是指根据患者个体化的生理特征,利用3D打印技术等先进制造技术,制备符合患者需求的个性化支架。通过制造定制化支架,可以实现形状、尺寸、结构和功能的个性化设计,以更好地适应患者的个体情况,提高治疗效果和生物相容性[38]。Peña等[39]根据患者情况定制化制备的聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)假体与缺损部位具有精确的匹配度,且无排异反应、毒性反应、局部或全身感染等并发症发生,因此,定制化制造支架在保证个性化设计的同时兼具了治疗效果。
通过生物打印技术也可以精确制造出具有复杂结构和微观特征的人工血管[5,42],制造出的人工血管还可以用于体外培养细胞,促进血管内皮细胞的生长和血管形成,为研究血管再生机制提供实验平台。Yang等[28]在所构建的微流体血管通道内成功培养了人脐静脉内皮细胞。利用3D打印技术,可以根据患者具体的血管结构和尺寸定制化制造血管支架[43],这种定制化可以确保血管支架与患者的血管结构更好地契合,提高治疗效果和患者的生活质量[40] 。人体不同动脉之间的大小变化及厚薄等差异很大,Pinnock等[44]就此创新性地提出了一种新方法,通过复制血管的主要结构成分——平滑肌层或中膜,来生产可定制的、自组织的血管结构,其构建的方法易于重复,并且允许定制细胞组成,其血管壁厚度和血管结构的长度仅仅通过改变3D打印插入的大小即可实现。
基于生物打印定制化血管支架构建具有可持续性的血管组织工程也是一项复杂而具有挑战性的任务。通过结合3D打印和细胞培养技术来实现血管组织工程的目标,促进细胞在支架表面的附着、增殖和分化,能够形成具有血管特征的组织结构,在体外培养出具有完整结构和功能的人工血管组织[45]。Yang等[28]利用3D打印技术,通过紫外光交联法将小鼠10T 1/2细胞封装在GelMA中,在体外制备出微流体血管通道。通过使用可再生材料、生物降解材料等环保材料,3D打印技术有望实现更加环保和可持续的生产方式。同时,3D打印技术可以实现批量生产和大规模生产,有助于降低生产成本和提高生产效率[46],例如将生物打印与微流控芯片相结合,打印过程中可以在1 min内同时管理芯片上的3种不同的组织模型,并且能够连续处理许多器官芯片而无需人工干预,这有效地提高了生产效率,也为血管再生领域的研究和临床应用提供了更多的可能性和机遇,有助于推动其发展和推广[47]

2 3D打印技术在血管再生领域的改进方向

尽管取得了一些显著的成果,3D打印在血管再生领域的应用还面临一些挑战,如打印精度、生物相容性、血管功能的恢复及大规模生产的可行性等问题[48-50]

2.1 选择生物相容性材料

选择生物相容性更高的材料是保证支架与生物组织良好相容的关键。常用的包括生物降解性聚合物[如PLA、聚乙二醇酸(polyglycolic acid, PGA)、聚己内酯(polycaprolactone, PCL)][51]和生物陶瓷(如羟基磷灰石)[27]等。 Qiu等[29]的研究揭示了这类生物可吸收支架在2年体外降解过程中的相互机械作用,这对进一步开发用于治疗心血管疾病的生物可吸收植入物具有重要意义。然而,支架必须能够逐渐降解并释放出生物活性物质,为细胞增殖和血管形成提供支持[51-52]。当前商业上的人工血管移植物一般由塑料制成,塑料具有高强度但缺乏弹性,而Moore等[53]制备出一种由天然材料制成的小直径血管,其能够缓慢降解,具有良好弹性、生物相容性好等优点,在临床上具有用于血管搭桥手术的潜力。

2.2 提高打印精度

在血管再生领域,提高3D打印技术的精度可实现更精细的血管支架设计和更有效的血管再生。此外,合理设计的微结构还能为细胞提供生长和营养输送的通道,促进血管再生组织的渗透和生长。有学者通过紫外或合适的交联剂,确保了每一个液滴附着在前一层打印面,从而产生一个连贯和完整的结构;还通过喷墨打印实现了高分辨率打印,并且对活细胞较为温和[54]

2.3 提高细胞存活率与保持功能

提高细胞存活率,首先需要选择具有良好生物相容性和细胞支持能力的生物材料,以提供良好的支持环境;其次,需要调整打印速度、温度、层高、填充密度等参数,以有效减少打印过程中的误差,提高打印的准确性和稳定性,为细胞提供附着、增殖和血管内皮细胞迁移的良好环境[31],同时其也可减少对细胞的机械应力和热应力,确保细胞在打印过程中不受到过度损伤。Zhang等[55]的研究就发现不同海藻酸钠盐的浓度对组织支架的孔径并无太大影响,而海藻酸钠盐的浓度越高,物理支架越稳定,并且海藻酸钠盐的浓度对细胞活力和细胞形态有显著影响。Graney等[30]也发现生物材料可以抑制或促进生长因子激活,以实现对慢性伤口、组织缺损的治疗效果。

2.4 跨学科合作与技术创新

跨学科合作是指不同学科的专业人员在特定的问题上合作,共同发展解决问题的策略和方法[56]。在血管再生领域,这种合作可能涉及生物学、医学、工程学、物理学、计算机科学等多个学科。生物学家可能会研究血管生成和退化的分子机制,如Monnier等[57]揭示了炎症反应是如何调节血管生成的,其中就包含分子和细胞机制;医学专家可能会关注血管疾病的治疗方法,如Ridker等[58]的CANTOS试验证实了抑制心血管疾病高危患者的炎症能使动脉粥样硬化患者减少血管破裂和血栓形成的风险,药物研发者也开发出了靶向作用于血管炎症的纳米颗粒制剂,其具有局部递送的能力,可减少由败血症导致的死亡[59];工程师则可能致力于开发新的材料和技术来促进血管再生,如Soriente等[60]利用壳聚糖-聚乙二醇支架作为生物激发材料控制了体外血管的生成、细胞的迁移并促成了管状血管的形成。这种合作可以加速技术创新,提高解决方案的质量和效果[61]。结合以上因素,通过合理选择材料、设计支架结构和控制生物活性因子的释放,可以实现支架对细胞增殖和血管再生的良好支持作用[62]

3 总结

本文揭示了3D打印技术在医学领域特别是血管再生领域的前沿进展,以及其所具有的潜在优势和待克服的难题,为进一步深入研究3D打印在血管再生中的实际应用提供了基础。在3D打印技术中,材料的选择和生物相容性是关键。目前,如何找到既能模拟生物环境又具备良好生物降解性的材料,是一个亟待解决的难题[63-64]。打印精度和复杂血管结构的再现能力仍有待提高,这需要更先进的打印技术和算法的支持[38]。此外,3D打印过程中细胞存活率和血管功能的保持也是一个重要考量因素。尽管一些研究已经表明3D打印的血管可以诱导细胞生长,但长时间的功能稳定性和血管网络的构建仍需进一步优化[65]
从长远的角度来看,3D打印技术在血管再生领域的应用有着广阔的前景,其有可能被应用于临床手术中的血管重建,甚至是个性化药物递送系统[66]。为了实现这些愿景,需要在基础研究和临床转化之间架起桥梁[67],推动相关法规的完善,以及提高公众对这项技术的认知和接受度。尽管3D打印技术在血管再生领域展现出了巨大的潜力,但仍需克服一系列技术、材料和伦理上的挑战。通过持续的科研创新和跨学科合作,这一前沿技术或许会在不久的将来给血管再生领域带来革命性的变革。

作者贡献声明

倪忞:查找相关资料、分析案例、撰写论文;曹霞:提出研究思路和框架,修改论文;徐希明、余江南:提出研究思路和框架。

利益冲突声明

本研究未受到企业、公司等第三方资助,不存在潜在利益冲突。

References

[1]
HYUNGJOO K. Market analysis and the future of sustainable design using 3D printing technology[J]. Archives of Design Research, 2018, 31(1): 23-35.
[2]
WANG P J, SUN Y Z, SHI X Q, et al. 3D printing of tissue engineering scaffolds: a focus on vascular regeneration[J]. Bio-Design and Manufacturing, 2021, 4(2): 344-378.
[3]
JALILIAN E, ELKIN K, SHIN S R. Novel cell-based and tissue engineering approaches for induction of angiogenesis as an alternative therapy for diabetic retinopathy[J]. International Journal of Molecular Sciences, 2020, 21(10): 3496.
[4]
WINKLER S, MEYER K V, HEUER C, et al. Invitro biocompatibility evaluation of a heat-resistant 3D printing material for use in customized cell culture devices[J]. Engineering in Life Sciences, 2022, 22(11): 699-708.
[5]
HANN S Y, CUI H T, ESWORTHY T, et al. Recent advances in 3D printing: vascular network for tissue and organ regeneration[J]. Translational Research, 2019, 211: 46-63. DOI: 10.1016/j.trsl.2019.04.002.
Over the past years, the fabrication of adequate vascular networks has remained the main challenge in engineering tissues due to technical difficulties, while the ultimate objective of tissue engineering is to create fully functional and sustainable organs and tissues to transplant in the human body. There have been a number of studies performed to overcome this limitation, and as a result, 3D printing has become an emerging technique to serve in a variety of applications in constructing vascular networks within tissues and organs. 3D printing incorporated technical approaches allow researchers to fabricate complex and systematic architecture of vascular networks and offer various selections for fabrication materials and printing techniques. In this review, we will discuss materials and strategies for 3D printed vascular networks as well as specific applications for certain vascularized tissue and organ regeneration. We will also address the current limitations of vascular tissue engineering and make suggestions for future directions research may take.Copyright © 2019 Elsevier Inc. All rights reserved.
[6]
LEI D, YANG Y, LIU Z H, et al. 3D printing of biomimetic vasculature for tissue regeneration[J]. Materials Horizons, 2019, 6(6): 1197-1206.
One of the pivotal factors that limits the clinical applications of tissue engineering is the inability to create complex three-dimensional (3D) tissues due to the lack of a long-range mass transport capability. Here we present a simple versatile strategy to fabricate perfusable and permeable hierarchical microchannel-networks (PHMs) via the combination of one-pot 3D printed sacrificial caramel templates and polymer coating with integrated phase separation. The patterned PHMs possess a biomimetic three level vascular structure including a custom-made scalable 3D framework, interconnected microchannels and permeable walls with controllable micropores. The fabrication process can be adapted to various polymers and integrated with diverse matrices including hydrogels, particle leached porous scaffolds, electrospun nanofibers, and bacterial cellulose. We demonstrated the power of PHMs to facilitate mass exchange in tissue engineering constructs by showing that the PHMs could maintain the metabolic functions of heart cells in vitro, facilitate in vivo angiogenesis and tissue integration, and efficiently treat myocardial infarction.
[7]
JIAN H L, WANG M Y, WANG S T, et al. 3D bioprinting for cell culture and tissue fabrication[J]. Bio-Design and Manufacturing, 2018, 1(1): 45-61.
[8]
PAULSEN S J, MILLER J S. Tissue vascularization through 3D printing: will technology bring us flow?[J]. Developmental Dynamics, 2015, 244(5): 629-640.
Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive.3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue.As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases.© 2015 Wiley Periodicals, Inc.
[9]
KHANNA A, AYAN B, UNDIEH A A, et al. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration[J]. Journal of Molecular and Cellular Cardiology, 2022, 169: 13-27. DOI: 10.1016/J.YJMCC.2022.04.017.
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.Published by Elsevier Ltd.
[10]
YANG G H, KANG D G, AN S, et al. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications[J]. Biomaterials Research, 2022, 26(1): 73.
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.© 2022. The Author(s).
[11]
GORIAINOV V, MCEWAN J K, OREFFO R O, et al. Application of 3D-printed patient-specific skeletal implants augmented with autologous skeletal stem cells[J]. Regenerative Medicine, 2018, 13(3): 283-294.
Joint replacements have proved a medical success providing symptomatic relief and return to mobility in many patients with arthritis. However, multiple revision surgeries due to joint failure can result in complex revision scenarios with significant bone tissue loss, in an elderly population, which poses a significant clinical challenge. Computer-aided design-computer-assisted manufacturing (CAD-CAM) prototyped bespoke implants are currently being used as an alternative and innovative approach for joint restoration in salvage cases, while the incorporation of autologous skeletal stem cells to optimize regenerative capacity can enhance implant osseointegration. We present a case series of 11 patients with severe disability and significant bone loss due to failed joint replacements. The choice of CAD-CAM prototyped joint implants enhanced with autologous skeletal stem cells resulted in significant patient-reported clinical and radiological improvements.
[12]
BAX M, THORPE J, ROMANOV V. The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence[J]. Frontiers in Sensors, 2023, 4: 1294721. DOI: 10.3389/FSENS.2023.1294721.
[13]
DO A V, KHORSAND B, GEARY S M, et al. 3D printing of scaffolds for tissue regeneration applications[J]. Advanced Healthcare Materials, 2015, 4(12): 1742-1762.
[14]
ADHARSH S, ABUL KALAM AZAD A, FAHMIDHA F Y, et al. Review on 3d printing of biological tissues and the materialization[J]. IOP Conference Series: Materials Science and Engineering, 2020, 988(1): 012128.
[15]
GU Z M, FU J Z, LIN H, et al. Development of 3D bioprinting: from printing methods to biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(5): 529-557.
Biomanufacturing of tissues/organs is our big dream, driven by two needs: organ transplantation and accurate tissue models. Over the last decades, 3D bioprinting has been widely applied in the construction of many tissues/organs such as skins, vessels, hearts,, which can not only lay a foundation for the grand goal of organ replacement, but also be served as models committed to pharmacokinetics, drug screening and so on. As organs are so complicated, many bioprinting methods are exploited to figure out the challenges of different applications. So the question is how to choose the suitable bioprinting method? Herein, we systematically review the evolution, process and classification of 3D bioprinting with an emphasis on the fundamental printing principles and commercialized bioprinters. We summarize and classify extrusion-based, droplet-based, and photocuring-based bioprinting methods and give some advices for applications. Among them, coaxial and multi-material bioprinting are highlighted and basic principles of designing bioinks are also discussed.© 2019 Shenyang Pharmaceutical University. Published by Elsevier B.V.
[16]
MALEKTAJ H, NOUR S, IMANI R, et al. Angiogenesis induction as a key step in cardiac tissue regeneration: from angiogenic agents to biomaterials[J]. International Journal of Pharmaceutics, 2023, 643: 123233. DOI: 10.1016/J.IJPHARM.2023.123233.
[17]
LIU S H, HU Q X, SHEN Z P, et al. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering[J]. Biotechnology and Bioengineering, 2022, 119(1): 118-133.
[18]
KABIRIAN F, MOZAFARI M, MELA P, et al. Incorporation of controlled release systems improves the functionality of biodegradable 3D printed cardiovascular implants[J]. ACS Biomaterials Science & Engineering, 2023, 9(11): 5953-5967.
[19]
WENG T T, WANG J L, YANG M, et al. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing[J]. Burns & Trauma, 2022, 10: tkab049. DOI: 10.1093/BURNST/TKAB049.
[20]
SHAIK F, CUTHBERT G A, HOMER-VANNIASINKAM S, et al. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy[J]. Biomolecules, 2020, 10(12): 1673.
[21]
LI P F, RUAN L M, JIANG G H, et al. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing[J]. Acta Biomaterialia, 2022, 152: 197-209. DOI: 10.1016/J.ACTBIO.2022.08.075.
Electrospun nanofibrous scaffolds show great application potentials for wound healing owing to their effective simulation of extracellular matrix (ECM). Three-dimensional (3D) nanofibrous dressings exhibit relatively high specific surface areas, better mimicry of native ECM, adjustable hydrophilicity and breathability, good histocompatibility, enhanced wound healing, and reduced inflammation. In the present work, we designed the 3D polycaprolactone/ε-polylysine modified chitosan (PCL/PCS) nanofibrous scaffolds by an electrospinning and gas foaming process. Then, gelatin and heparin (Gel/Hep) were assembled onto the surface of PCL/PCS nanofibers by electrostatic adsorption, and vascular endothelial growth factors (VEGFs) were also synchronously incorporated into Gel/Hep layer to form a multifunctional 3D nanofibrous scaffold (PCL/PCS@Gel/Hep+VEGF) for accelerating wound healing. The as-fabricated 3D PCL/PCS@GEL/Hep+VEGF nanofibrous scaffold showed excellent antibacterial ability, hemocompatibility and biocompatibility in vitro and wound healing ability in vivo. Immunological analysis showed that the as-fabricated nanofibrous scaffold inhibited inflammation at the wound sites while promoting angiogenesis during the wound healing process. STATEMENT OF SIGNIFICANCE: The electrospun 3D fibrous scaffolds using polycaprolactone/ε-polylysine modified chitosan (PCL/PCS) have been fabricated as backbone for mimicking the extracellular matrix (ECM). Gelatin and heparin (Gel/Hep) were wrapped onto the surface of PCL/PCS fibers by electrostatic adsorption and vascular endothelial growth factors (VEGFs) were also synchronously incorporated into surface Gel/Hep layer to form multifunctional 3D fibrous scaffolds. The as-fabricated multifunctional 3D fibrous scaffolds with good antibacterial ability and biocompatibility have been used as dressings for accelerating wound healing by inhibiting inflammation at the wound sites while promoting angiogenesis during the wound healing process.Copyright © 2022. Published by Elsevier Ltd.
[22]
SABERIANPOUR S, HEIDARZADEH M, GERANMAYEH M H, et al. Tissue engineering strategies for the induction of angiogenesis using biomaterials[J]. Journal of Biological Engineering, 2018, 12: 36. DOI: 10.1186/s13036-018-0133-4.
Angiogenesis is touted as a fundamental procedure in the regeneration and restoration of different tissues. The induction of de novo blood vessels seems to be vital to yield a successful cell transplantation rate loaded on various scaffolds. Scaffolds are natural or artificial substances that are considered as one of the means for delivering, aligning, maintaining cell connection in a favor of angiogenesis. In addition to the potential role of distinct scaffold type on vascularization, the application of some strategies such as genetic manipulation, and conjugation of pro-angiogenic factors could intensify angiogenesis potential. In the current review, we focused on the status of numerous scaffolds applicable in the field of vascular biology. Also, different strategies and priming approaches useful for the induction of pro-angiogenic signaling pathways were highlighted.
[23]
MORTON A B, JACOBSEN N L, SEGAL S S. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury[J]. American Journal of Physiology Cell Physiology, 2021, 320(6): C1099-C1111.
[24]
ZHAO Q L, LU W W, WANG M. Modulating the release of vascular endothelial growth factor by negative-voltage emulsion electrospinning for improved vascular regeneration[J]. Materials Letters, 2017, 193: 1-4. DOI: 10.1016/j.matlet.2017.01.058.
[25]
ZHANG L X, YUAN Z C, SHAFIQ M, et al. An injectable integration of autologous bioactive concentrated growth factor and gelatin methacrylate hydrogel with efficient growth factor release and 3D spatial structure for accelerated wound healing[J]. Macromolecular Bioscience, 2023, 23(4): e2200500.
[26]
XU D Z, SHI J N, QIU R, et al. Comparative investigations on properties of three kinds of FDM 3D-printed natural plant powder/poly(lactic acid) biocomposites[J]. Polymers, 2023, 15(3): 557.
[27]
ADAMU M A, SUMAILA M, DAUDA M, et al. A novel polycaprolactone/rice husk ash/hydroxyapatite biopolymer composite for bone implant: physico-mechanical and biodegradable analysis[J]. Iranian Polymer Journal, 2024, 33(3): 395-404.
[28]
YANG L, SHRIDHAR S V, GERWITZ M, et al. An in vitro vascular chip using 3D printing-enabled hydrogel casting[J]. Biofabrication, 2016, 8(3): 035015.
[29]
QIU T, HE R, ABUNASSAR C, et al. Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessel[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78: 254-265. DOI: 10.1016/j.jmbbm.2017.11.031.
This paper aims to evaluate the mechanical behaviour of a bioresorbable polymeric coronary scaffold using finite element method, focusing on scaffold-artery interaction during degradation and vessel remodelling. A series of nonlinear stress-strain responses was constructed to match the experimental measurement of radial stiffness and strength for polymeric scaffolds over 2-year in-vitro degradation times. Degradation process was modelled by incorporating the change of material property as a function of time. Vessel remodelling was realised by changing the size of artery-plaque system manually, according to the clinical data in literature. Over degradation times, stress on the scaffold tended to increase firstly and then decreased gradually, corresponding to the changing yield stress of the scaffold material; whereas the stress on the plaque and arterial layers showed a continuous decrease. In addition, stress reduction was also observed for scaffold, plaque and artery in the simulations with the consideration of vessel remodelling. For the first time, the work offered insights into mechanical interaction between a bioresorbable scaffold and blood vessel during two-year in-vitro degradation, which has significance in assisting with further development of bioresorbable implants for treating cardiovascular diseases.Copyright © 2017 Elsevier Ltd. All rights reserved.
[30]
GRANEY P L, LURIER E B, SPILLER K L. Biomaterials and bioactive factor delivery systems for the control of macrophage activation in regenerative medicine[J]. ACS Biomaterials Science & Engineering, 2018, 4(4): 1137-1148.
[31]
PEI B Q, HU M Y, WU X Q, et al. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1230682. DOI: 10.3389/FBIOE.2023.1230682.
[32]
ZÁRYBNICKÁ L, MELOUN Z, ŠAFKA J, et al. 3D printed heterogeneous cation exchange membrane processed using stereolithography[J]. Journal of Applied Polymer Science, 2023, 140(35): e54341.
[33]
CANDIDORI S, GRAZIOSI S, RUSSO P, et al. Design and 3D printing of a modular phantom of a uterus for medical device validation[J]. Rapid Prototyping Journal, 2023, 29(11): 7-20.
[34]
SHAFKAT A, SINGH GAUTAM K, MONICA S, et al. Highly accurate cardiac 3d printing is feasible and helpful in high-risk patients with complex congenital heart disease[J]. Circulation, 2017, 136(1): 20613.
[35]
YANG Y, WANG W M, ZENG Q R, et al. Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration[J]. Bioactive Materials, 2024, 40: 227-243. DOI: 10.1016/J.BIOACTMAT.2024.06.016.
Limited cells and factors, inadequate mechanical properties, and necrosis of defects center have hindered the wide clinical application of bone-tissue engineering scaffolds. Herein, we construct a self-oxygenated 3D printed bioactive hydrogel scaffold by integrating oxygen-generating nanoparticles and hybrid double network hydrogel structure. The hydrogel scaffold possesses the characteristics of extracellular matrix; Meanwhile, the fabricated hybrid double network structure by polyacrylamide and CaCl-crosslinked sodium carboxymethylcellulose endows the hydrogel favorable compressive strength and 3D printability. Furthermore, the O generated by CaO nanoparticles encapsulated in ZIF-8 releases steadily and sustainably because of the well-developed microporous structure of ZIF-8, which can significantly promote cell viability and proliferation, as well as angiogenesis and osteogenic differentiation with the assistance of Zn. More significantly, the synergy of O and 3D printed pore structure can prevent necrosis of defects center and facilitate cell infiltration by providing cells the nutrients and space they need, which can further induce vascular network ingrowth and accelerate bone regeneration in all areas of the defect. Overall, this work provides a new avenue for preparing cell/factor-free bone-tissue engineered scaffolds that possess great potential for tissue regeneration and clinical alternative.© 2024 The Authors.
[36]
HODGES N A, LAMPEJO A O, SHANG H L, et al. Viewing stromal vascular fraction de novo vessel formation and association with host microvasculature using the rat mesentery culture model[J]. Microcirculation, 2022, 29(6/7): e12758.
[37]
MA X Y, LIU J, ZHU W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling[J]. Advanced Drug Delivery Reviews, 2018, 132: 235-251. DOI: 10.1016/j.addr.2018.06.011.
[38]
FU F, QIN Z, XU C, et al. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering[J]. Neural Regeneration Research, 2017, 12(4): 614-622.
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.
[39]
DE LA PEÑA A, DE LA PEÑA-BRAMBILA J, PÉREZ-DE LA TORRE J, et al. Low-cost customized cranioplasty using a 3D digital printing model: a case report[J]. 3D Printing in Medicine, 2018, 4(1): 4.
Cranial defects usually occur after trauma, neurosurgical procedures like decompressive craniotomy, tumour resections, infection and congenital defects. The purpose of cranial vault repair is to protect the underlying brain tissue, to reduce any localized pain and patient anxiety, and improve cranial aesthetics. Cranioplasty is a frequent neurosurgical procedure achieved with the aid of cranial prosthesis made from materials such as: titanium, autologous bone, ceramics and polymers. Prosthesis production is often costly and requires complex intraoperative processes. Implant customized manufacturing for craniopathies allows for a precise and anatomical reconstruction in a shorter operating time compared to other conventional techniques. We present a simple, low-cost method for prosthesis manufacturing that ensures surgical success.Two patients with cranial defects are presented to describe the three-dimensional (3D) printing technique for cranial reconstruction. A digital prosthesis model is designed and manufactured with the aid of a 3D computed tomography. Both the data of large sized cranial defects and the prosthesis are transferred to a 3D printer to obtain a physical model in poly-lactic acid which is then used in a laboratory to cast the final customised prosthesis in polymethyl methacrylate (PMMA).A precise compliance of the prosthesis to the osseous defect was achieved. At the 6 month postoperative follow-up no complications were observed i.e. rejection, toxicity, local or systemic infection, and the aesthetic change was very significant and satisfactory. Customized 3D PMMA prosthesis offers cost advantages, a great aesthetic result, reduced operating time and good biocompatibility.
[40]
GARCIA-VILLEN F, LÓPEZ-ZÁRRAGA F, VISERAS C, et al. 219Three-dimensional printing as a cutting-edge, versatile and personalizable vascular stent manufacturing procedure: toward tailor-made medical devices[J]. International Journal of Bioprinting, 2023, 9(2): 664.
[41]
ROOHI R, EMDAD H, JAFARPUR K. Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-newtonian, multi-branch simulation based on CFD and GMDH algorithm[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105185. DOI: 10.1016/J.ICHEATMASSTRANSFER.2021.105185.
[42]
张一帆, 徐铭恩, 王玲, 等. 利用同轴3D打印技术构建促内皮细胞生长类血管组织工程支架[J]. 中国生物医学工程学报, 2020, 39(2): 206-214.
ZHANG Y F, XU M E, WANG L, et al. Construction of vascular tissue engineering scaffold for promoting endothelial cell growth by coaxial 3D printing technology[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 206-214.
[43]
SHANG Y C, PIANTINO M, ZENG J F, et al. Control of blood capillary networks and holes in blood-brain barrier models by regulating elastic modulus of scaffolds[J]. Materials Today Bio, 2023, 21: 100714. DOI: 10.1016/J.MTBIO.2023.100714.
[44]
PINNOCK C B, MEIER E M, JOSHI N N, et al. Customizable engineered blood vessels using 3D printed inserts[J]. Methods, 2016, 99: 20-27. DOI: 10.1016/j.ymeth.2015.12.015.
Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment.Copyright © 2015 Elsevier Inc. All rights reserved.
[45]
李金泰, 蓝升, 刘毅. 3D打印干细胞技术用于组织器官重建的现状与思考[J]. 器官移植, 2017, 8(4): 267-270.
LI J T, LAN S, LIU Y. Present situation and thinking of 3D printed stem cell technology in tissue and organ reconstruction[J]. Organ Transplantation, 2017, 8(4): 267-270.
[46]
FRITSCHEN A, LINDNER N, SCHOLPP S, et al. High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip[J]. Advanced Healthcare Materials, 2024, 13(17): e2304028.
[47]
FLEISCHER S, TAVAKOL D N, VUNJAK-NOVAKOVIC G. From arteries to capillaries: approaches to engineering human vasculature[J]. Advanced Functional Materials, 2020, 30(37): 1910811.
[48]
CHOI J, LEE E J, JANG W B, et al. Development of biocompatible 3D-printed artificial blood vessels through multidimensional approaches[J]. Journal of Functional Biomaterials, 2023, 14(10): 497.
[49]
刘宸希, 康红军, 吴金珠, 等. 3D打印技术及其在医疗领域的应用[J]. 材料工程, 2021, 49(6): 66-76.
Abstract
3D打印技术是一种快速兴起的新型数字化制造技术,因具有设计自由、大规模定制以及快速原型制造等优点,在医学、航天、汽车、食品等领域应用前景广阔。随着精准化、个性化医疗需求的增长,3D打印技术逐渐被应用到医疗领域,如植入物制造、诊断平台和药物输送系统等,并成为目前较为前沿的研究领域之一,其个性化定制的特点使得3D打印技术能够根据患者的病情制备相应的医疗产品以帮助患者康复。因此,本文概述了3D打印技术的发展,分类介绍了可用于3D打印的医用材料,以及3D打印技术在医疗领域的应用。但是3D打印的植入物是静态的,无生命的,不能随着内环境的变化进行适应性调整,4D打印可以制造出具有"活性"且结构更为复杂的、与天然组织结构非常相似的工程化组织结构,其继承了3D打印技术优点的同时,弥补了现有3D打印的一些缺陷,未来在医学领域会有更广阔的应用前景。
LIU C X, KANG H J, WU J Z, et al. 3D printing technology and its application in medical field[J]. Materials Engineering, 2021, 49(6): 66-76.
[50]
DIKICI S, CLAEYSSENS F, MACNEIL S. Bioengineering vascular networks to study angiogenesis and vascularization of physiologically relevant tissue models in vitro[J]. ACS Biomaterials Science & Engineering, 2020, 6(6): 3513-3528.
[51]
SUN F B, SUN X D, WANG H T, et al. Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering[J]. International Journal of Molecular Sciences, 2022, 23(10): 5831.
[52]
VATANKHAH E, PRABHAKARAN M P, RAMAKRISHNA S. Biomimetic microenvironment complexity to redress the balance between biodegradation and de novo matrix synthesis during early phase of vascular tissue engineering[J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 81: 39-47. DOI: 10.1016/j.jmbbm.2017.11.031.
[53]
MOORE M J, TAN R P, YANG N J, et al. Bioengineering artificial blood vessels from natural materials[J]. Trends in Biotechnology, 2022, 40(6): 693-707.
[54]
ANGELOPOULOS I, ALLENBY M C, LIM M, et al. Engineering inkjet bioprinting processes toward translational therapies[J]. Biotechnology and Bioengineering, 2020, 117(1): 272-284.
Bioprinting is the assembly of three-dimensional (3D) tissue constructs by layering cell-laden biomaterials using additive manufacturing techniques, offering great potential for tissue engineering and regenerative medicine. Such a process can be performed with high resolution and control by personalized or commercially available inkjet printers. However, bioprinting's clinical translation is significantly limited due to process engineering challenges. Upstream challenges include synthesis, cellular incorporation, and functionalization of "bioinks," and extrusion of print geometries. Downstream challenges address sterilization, culture, implantation, and degradation. In the long run, bioinks must provide a microenvironment to support cell growth, development, and maturation and must interact and integrate with the surrounding tissues after implantation. Additionally, a robust, scaleable manufacturing process must pass regulatory scrutiny from regulatory bodies such as U.S. Food and Drug Administration, European Medicines Agency, or Australian Therapeutic Goods Administration for bioprinting to have a real clinical impact. In this review, recent advances in inkjet-based 3D bioprinting will be presented, emphasizing on biomaterials available, their properties, and the process to generate bioprinted constructs with application in medicine. Current challenges and the future path of bioprinting and bioinks will be addressed, with emphasis in mass production aspects and the regulatory framework bioink-based products must comply to translate this technology from the bench to the clinic.© 2019 Wiley Periodicals, Inc.
[55]
ZHANG J H, WEHRLE E, VETSCH J R, et al. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology[J]. Biomedical Materials, 2019, 14(6): 065009.
[56]
PLATZ E, MORROW D A, VERBRUGGE F H, et al. Acute cardiovascular care in the emergency department and beyond: a call for interdisciplinary collaboration in clinical research[J]. European Heart Journal Acute Cardiovascular Care, 2023, 12(2): 77-79.
[57]
MONNIER Y, ZARIC J, RüEGG C. Inhibition of angiogenesis by non-steroidal anti-inflammatory drugs: from the bench to the bedside and back[J]. Current Drug Targets Inflammation and Allergy, 2005, 4(1): 31-38.
[58]
RIDKER P M, EVERETT B M, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. The New England Journal of Medicine, 2017, 377(12): 1119-1131.
Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved.We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death.At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31).Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.).
[59]
KASIKARA C, DORAN A C, CAI B S, et al. The role of non-resolving inflammation in atherosclerosis[J]. The Journal of Clinical Investigation, 2018, 128(7): 2713-2723.
[60]
SORIENTE A, AMODIO S P, FASOLINO I, et al. Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis[J]. Materials Science & Engineering C, Materials for Biological Applications, 2021, 118: 111420.DOI: 10.1016/j.msec.2020.111420.
[61]
曲东峰, GOLDSTEIN L B, GRUBB R L, 等. 缺血性卒中患者的早期处理指南——美国卒中学会卒中委员会科学声明[J]. 国际脑血管病杂志, 2003, 11(5): 323-339.
QU D F, GOLDSTEIN L B, GRUBB R L, et al. Guidelines for early management of patients with ischemic stroke-scientific statement of the Stroke Committee of American Stroke Association[J]. International Journal of Cerebrovascular Diseases, 2003, 11(5): 323-339.
[62]
DU A L, LIU D, ZHANG W H, et al. The development of endothelial cells in revascularization of blood vessels in kidney scaffolds[J]. Journal of Biomaterials and Tissue Engineering, 2019, 9(9): 1167-1178.
[63]
樊光娆, 苏海军, 郭敏, 等. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
FAN G R, SU H J, GUO M, et al. Research progress of bioceramic scaffold in promoting angiogenesis and osteogenesis of regenerated tissue[J]. Materials Guide, 2021, 35(1): 1096-1104.
[64]
LI S R, CUI Y T, LIU H, et al. Dual-functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis[J]. Materials Today Bio, 2024, 24: 100943. DOI: 10.1016/J.MTBIO.2024.100943.
[65]
ROY T K, SECOMB T W. Instability of flow distribution in heterogeneous microvascular networks with erythrocyte-derived metabolic signals[J]. The FASEB Journal, 2011, 25: 814. 1-814.1. DOI: 10.1096/fasebj.25.1_supplement.814.1.
[66]
GERAILI A, XING M, MEQUANINT K. Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment[J]. VIEW, 2021, 2(5): 20200126.
[67]
刘博文, 陈忠, 王盛, 等. 3D打印技术在血管外科领域应用现状及展望[J]. 中国实用外科杂志, 2016, 36(3): 341-343.
LIU B W, CHEN Z, WANG S, et al. Application status and prospect of 3D printing technology in vascular surgery[J]. China Journal of Practical Surgery, 2016, 36(3): 341-343.
PDF(941 KB)

45

Accesses

0

Citation

Detail

Sections
Recommended

/